
Common Reference Intervals

Dr Ronda Greaves 4th Vietnam CPC 14th July 2012

towards global harmonisation

Diagram: AACB Harmonisation logo

www.rmit.edu.au

Overview

- 1. Reference Intervals
 - Traditional Development
 - CLSI guidelines
 - Indirect Bhattacharya
- 2. Quality Initiatives
 - Post analytical error
 - Stockholm Criteria
 - Harmonisation
- 3. Common Reference Interval Projects
 - Examples around the world
 - Current Status
- 4. Summary

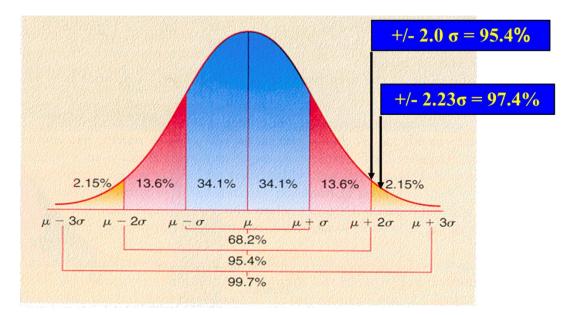
Special Acknowledgement

 A number of the slides for this presentation have been provided / adapted from the 2012 Pathology Update presentation on Common Reference Intervals by Dr Ken Sikaris

 I wish to thank Dr Ken for granting the use of the slides for this presentation

Reference Interval (RI)

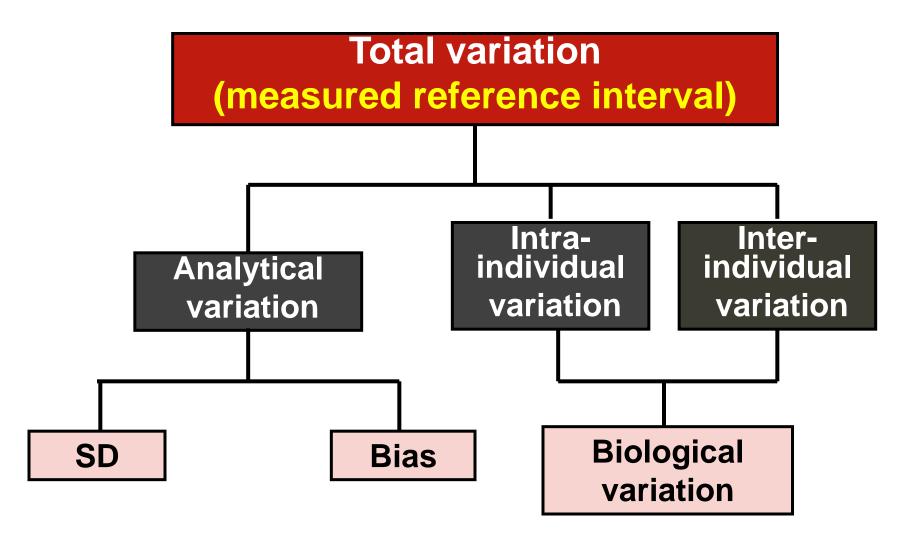
Normal can have 3 meanings:

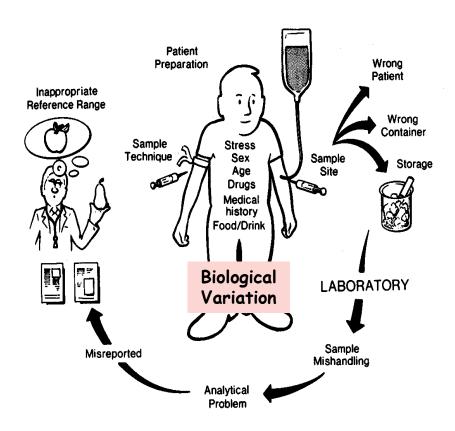

- 1. Gaussian (mathematical)
- 2. Common or usual or typical
- 3. Absence of disease (healthy)

Reference Range (RR) now replaced with term "Reference Interval"

RR ≡ RI

Reference Intervals


- Equivalent to interindividual biological variation data
- Based on Gaussian Distribution
- Traditionally the central 95% i.e. 2.5 – 97.5, leaves out 5% of population
- Patient results that fall outside the RI are typically flagged in some way as "abnormal"


Recommended Ranges: Rather than reference intervals needed because of evidence for clinical outcome

Reference Change Value (RCV): = $2^{0.5} \times Z \times (CVa^2 + CVi^2)^{0.5}$

Patient Result Variability

Effects of Biological Variation

- Specific age groups which require consideration
- Possibly in association with gender :
 - Neonate
 - Child
 - Adolescent
 - Adult
 - Elderly

Diagram: From White & Farrance CBR 2004

Biological Variation

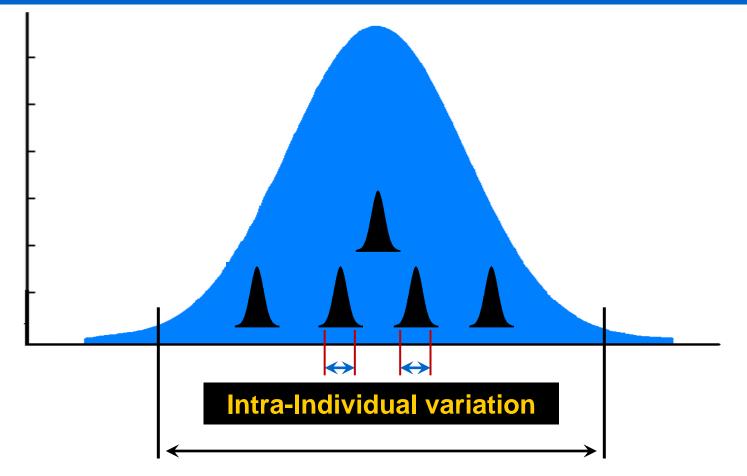
Outside Individual Control

- Age
- Gender
 - Estrogens
 - Androgens
- Body mass (body size)
- Genetic factors
- Physiological factors
 - stage in menstrual cycle
 - stage in pregnancy
 - menopause
- Diurnal factors, circadian rhythm
 - cortisol

Within Individual Control

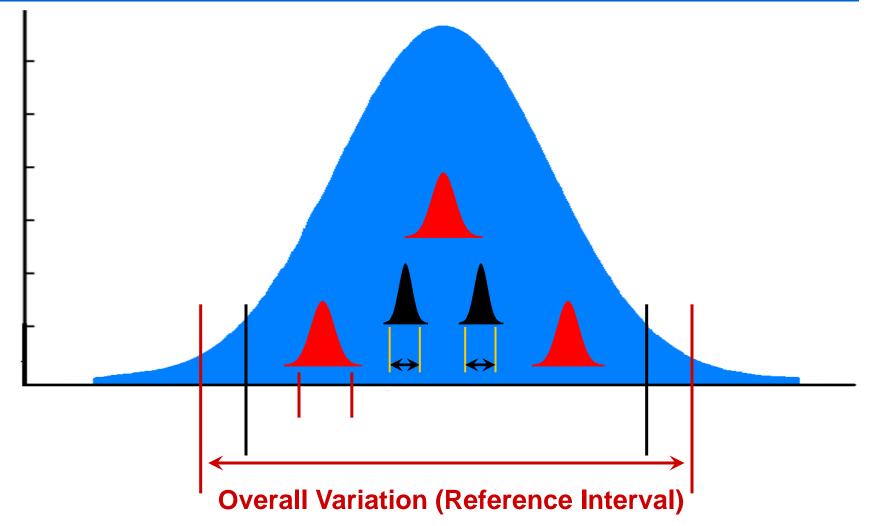
Diet

- fasting, time of meals, (glucose, lipids, phosphate)

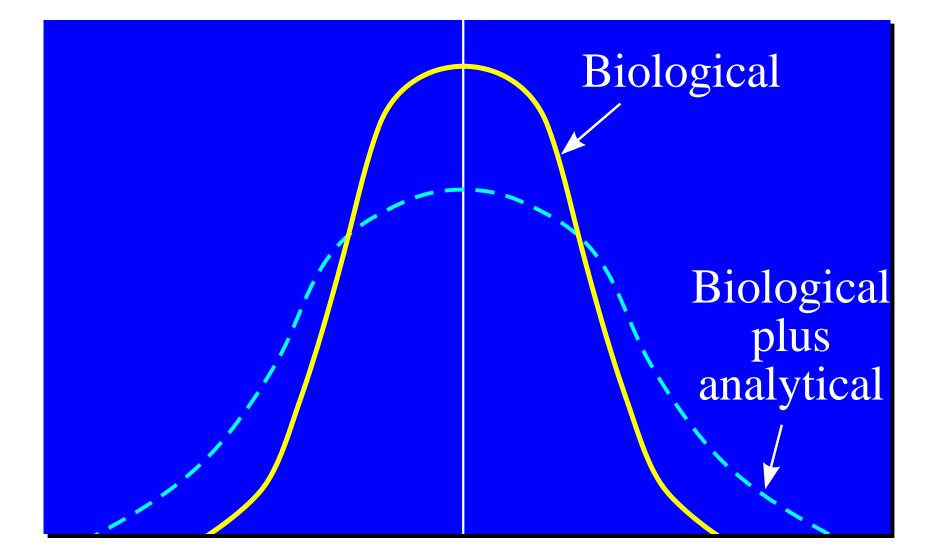

Drugs

- anti-epileptic's, oral contraceptive, (prescription)
- Vitamin C, caffeine, ethanol, smoking, (non-prescription)

Posture


- standing or recumbent, haemoconcentration of 10% to 15% (proteins & bound substances)
- Exercise (lactate, GH)
- Mental state (stress, student exams)
- Tourniquet (haemoconcentration)

Biological Variation Components of Variability



Overall Biological Variation

Reference Interval Components of Variability

Patient Result Variation

Effect of Analytical Imprecision on Reference Interval

Plasma Sodium mmol/L

A secolar disease

O a allowed and a 1/1

				Analytical	Sodium	mmol/L	
Biological SD	Analytical SD	Total SD	Reference Interval	SD 1			
3.0	1.0	3.2	135 - 147	2	←	→	
3.0	2.0	3.6	134 - 148		4		
3.0	3.0	4.2	133 - 149	3	·	ŗ	
3.0	4.0	5.0	131 - 151		←		→
	1			4 125	135	145	155

Total SD =
$$\sqrt{(SD_{biol}^2 + SD_{anal}^2)}$$

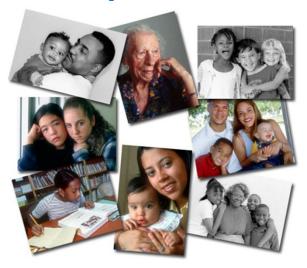
Biological Variation Data

Section of the Biological Variation database:

- First presented at Stockholm International Consensus Conference on Strategies to Set Global Analytical Quality Specifications in Laboratory Medicine
- Scan J Clin Lab Invest 1999;59:475-586
- 2012: 7th edition comprising >320 analytes

		Biological Variation		Desirable specification		
	Analyte	CVw	CVg	l(%)	B(%)	TE(%)
S-	Calcium	1.9	2.8	1	0.8	2.4
U-	Calcium, ionized	1.7	2.2	0.9	0.7	2.1
S-	Chloride	1.2	1.5	0.6	0.5	1.5
S-	Cholesterol	5.4	15.2	2.7	4	8.5
S-	Creatinine	5.3	14.2	2.7	3.8	8.2
S-	Glucose	5.7	6.9	2.9	2.2	6.9
В-	Hematocrit	2.8	6.4	1.4	1.7	4.1
В-	Hemoglobin	2.8	6.6	1.4	1.8	4.1
В-	Hemoglobin A1 C	3.4	5.1	1.7	1.5	4.3
S-	HDL cholesterol	7.1	19.7	3.6	5.2	11.1
B-	Lactate	27.2	16.7	13.6	8	30.4
В-	pCO2	4.8	5.3	2.4	1.8	5.7
В-	рН [Н+]	3.5	2	1.8	1	3.9
В-	pH (pH units)	0.2		0.1		
S-	Potassium	4.8	5.6	2.4	1.8	5.8
P-	Prothrombin time	4	6.8	2	2	5.3
(B)Erythr-	Sodium	1.8	12.4	0.9	3.1	4.6
S-	Sodium	0.7	1	0.4	0.3	0.9
S-	Triglyceride	20.9	37.2	10.5	10.7	27.9

http://www.westgard.com/biodatabase1.htm


RMIT University

Developing Reference Intervals

Sample Size

The IFCC & CLSI protocols typically suggest a minimum of 120 reference individuals for each sample or subgroup **Population**

A set of selection criteria is required, which determines who should be included or excluded from the group of reference individuals

Partition Criteria (gender, age, fasting, etc ..) usually required

Possible Exclusion Criteria

- Risk factors
 - obesity
 - hypertension
 - genetically determined risk
- Specific physiological states
 - pregnancy
 - excessive exercise
- Disease
- Intake of pharmacologically active agents
 - drug treatment for disease
 - oral contraceptives
 - alcohol, nicotine

Defining the Reference Interval

Direct Approach

- 1. Kit Inserts
- 2. Publications / Textbooks
- Historical 'in house' studies
 - -Guideline compliant studies (eg CLSI C28:A3)
 - -Pre-guideline studies
 - -Pre-historic studies

Indirect Approach

- 4. Bhattacharya
- Assume that significant subset of laboratory results are from 'unaffected' patients
- Use statistical means to derive the 'healthy' subpopulation
 - 'disease affected' v.s. 'unaffected'

Common Sources for the "Direct Approach" if new RI required

Kit Insert

- Development of RI is resource intensive
- Now far more dependent on manufacturers to establish scientifically sound RI
- All kit inserts generally state that the RI should be verified by the lab
- This is less labour intensive by doing:
 - Patient comparisons old & new method
 - Transference of RI

Published Data

- Published RI studies are often used my manufacturers for their kit inserts
- Journal or Text books
- Also useful for specific population groups
- May be method specific
- These published RI should be verified by the lab
- Can use:
 - -Transference of RI

CLSI Compliant RI Studies

- CLSI / IFCC
 C28-A3
 November 2008
 - -Published
 - –In-house (unpublished)

C28-A3 Vol. 28 No. 30 Replaces C28-A2 Vol. 20 No. 13

Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline— Third Edition

This document contains guidelines for determining reference values and reference intervals for quantitative clinical laboratory tests. A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.

Transference of RI: Comparing the Analytical Systems

- 1. Appropriateness of donor reference laboratories RI
- 2. Comparability of pre-analytical factors
- 3. Comparability of analytical method: i.e. Assay results are highly correlated but there is a proportional bias e.g.

 $y = 1.50 \times -0.832$, $r^2 = 0.990$

A result of 100 by the old method will now be 149 with the new method A result of 500 by the old method will now be 749 with the new method

- 4. Comparability of test subjects
- 5. Validation

Validating the Transference of RI

CLSI Section 11 11 Validation

Essentially, three approaches can be used to assess the acceptability of the transference of a reference interval:

(1) a subjective assessment;

- (2) a statistical test on a relatively small number of reference individuals (eg, n = 20); and
- (3) an evaluation of a larger number of reference individuals (but fewer than n = 120, the number needed to perform a standard reference interval study).

11.1 Validation: Subjective

The acceptability of the transfer may be rather subjectively assessed by a careful inspection of the pertinent factors of the original appropriate reference value study. To be able to do this, all of the reference population demographic variables and geographic locations must be adequately described and be available for review. Also, the preanalytical and the analytical procedural details, analytical performance, the complete set of reference values, and the method of estimating the reference interval must be stated. If, in the judgment of the laboratorian, these factors are consistent with the receiving laboratory's operation and test subject population, then the reference interval may be transferred without a requirement for any receiving laboratory validation studies, other than a documentation of these considerations.

RMIT University

Transference of RI: Comparing the Test Subject Populations

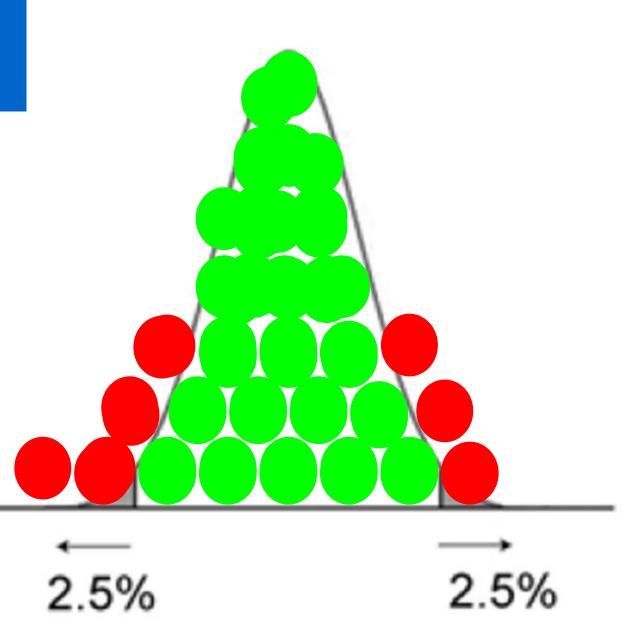
CLSI section 11.2

11.2 Validation: Using Small Numbers of Reference Individuals

This approach, calling for the receiving laboratory to test 20 selected subjects using the comparable or same method of analysis, and accepting the manufacturer's or donor laboratory's limits if two or fewer test results fall outside those limits, is statistically sound, as may be proven by recourse to tables of the binomial distribution.

N=20

18 or more must fall into reference interval


- This approach works if the RI applied is suitably narrow (i.e. imprecision is comparable
- Also needs the same accuracy base
- Decreased Imprecision a problem with this approach
 - Reduce Cvi Eg Collection/Transport
 - Reduce Cva Eg Within run

Limitations of the 18/20 Rule

1. Recognises inaccuracy

2. Recognises increased imprecision

3. Does **NOT** recognise decreased imprecision

Indirect: "Bhattacharya" Reference Intervals

A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS

C. G. BHATTACHARYA

Central Inland Fisheries Research Institute, Barrackpore, India1

SUMMARY

An approximate method of solution is given of the problem of resolution of a distribution into Gaussian components when the component distributions are adequately separated. Illustrative examples are given.

- Data mining
- Ideal for large labs
- Predominantly an OP population
- Sonic in Australia have done this

 Outcome = Harmonised RI

Arzideh F et al, J Lab Med 2009;33:52-66

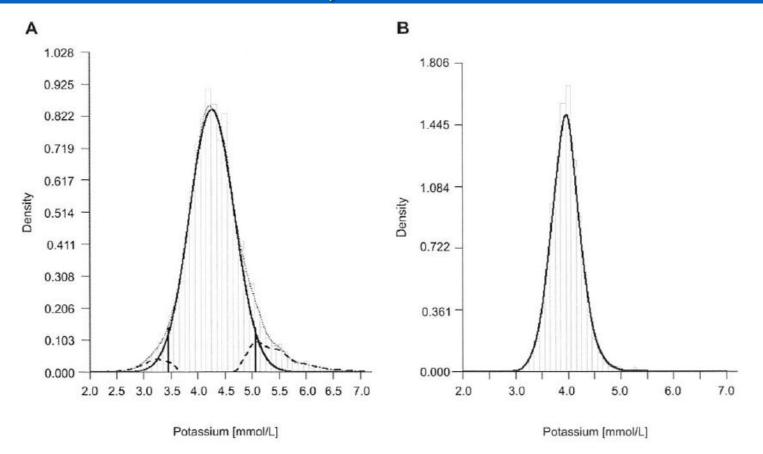


Figure 1 Distribution of serum potassium concentrations (A) from patients (laboratory H, n=13291) and (B) from blood donors (laboratory B, n=1129). Solid curves display the estimated distributions of the non-diseased subpopulations, dashed curves of the diseased and dotted curves of the mixed population. Perpendicular solid lines represent $RL_{2.5}$ (3.46 mmol/L) and $RL_{97.5}$ (5.08 mmol/L).

RMIT University

Sonic "Bhattacharya" Adult RI

						wo	MEN							М	EN	an and		170
ANALYTE		UNITS	16-29	30-39	40-49	50-59	60-69	70-79	80-89	90+	18-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
Sodium	Na	mmol/L				135	-145	1			Children and		A COLOR	135	-145	1.1		
Potassium	к	mmol/L				3.5	-5.5							3.5	-5.5			
Chloride	Cr *	mmol/L				95-	-110					1		95	-110			
Bicarbonate	HC03	mmol/L				20	+32							20	-32			
Urea	Urea	mmol/L	2.5-6.5	2.5	-7.0	3.0-8.0	3.0-8.5	3.5-9.5	3.5-10.0	4.0-10.0	3.0-7.5	3.0	0.8-	3.5-8.5	3.5-9.0	3.5-9.5	4.0-10.0	4.5-10.0
Creatinine	Creat	umol/L			45-85			45-90	45-95	45-100			60-110			60-115	60-120	60-125
Anion Gap	AG	mmol/L				10	-20							10	-20			
Total Bilirubin	TBIL	umol/L.				3-	-15							4	-20		-	
Conjugated Bilirubin	CBIL	umol/L				0	1-7				_			C	-7		_	
Alkaline Phosphatase	ALP	IU/L		20-105				30-115						35	-110			
Gammaglut-transferase	GGT	IU/L				5-	-35				-			5	-50			
AlanineTransaminase	ALT	IU/L				5-	-30				1200			5	-40			
AspartateTransaminase	AST	IU/L				10	-35							10	-40			
Total Protein	TP	gm/L		64-81			63-80		61	-78	66	5-83	-	63	-80		61	-78
Albumin	Alb	gm/L		37-48			36-47	_	34	-45	39	-50		36	-47		34	1-45
Globulins	Glob	gm/L				23	-39							23	-39			
Total Calcium	TGa	mmol/L				2.15	-2.55	11112	(Contractor	101 201	Sec. 2			2.15	-2.55	1.2713		
Corrected Calcium	CCa	mmol/L		2.15-2.55			1.0	2.20-2.60	125.237	1.1.1	10			2.15	-2.55			
Phosphate	PO4	mmol/L				0.8	-1.5		11 mi		Maria a		100Cores	8.0	-1.5	1 - Com		
Uric Acid	Urate	mmol/L				0.15	-0.40							0.20	-0.50			
Lactate Dehydrogenase	LD	IU/L				120	-250			10-20-02		The second		120	-250		Real and	
Creatine Kinase	СК	IU/L	- 12 L.	Care Ser		30	-150			No.	R Rende	45	-250		C. C	40-200		30-150
Lipase	Lip	IU/L		10-55			同時在時	10-65	- Standard	No.	1. 1. 1.	10-55		1	1.4	10-65		Prove State
Amylase	Агну	IU/L	of Station	20-100	1. 1. 1. A.	20	-110	1	20-120			20-100		20	-110	States 2	20-120	120.00
Iron	Fe	umol/L				5	-30	TT REAL	a second		and the second			5	-30			
Transferrin	Trf	gm/L		2.0-3.6		Auge -		2.0-3.2		12 20				.2.0	-3.2			
Transferrin Saturation	FeSat	%			1.States is	10	-45	and the second	State of the	CALL ST	1.0-1-1-			10)-45			
Ferritin	Fer	ug/L	30-	-200	30-300			30-500	S SI SI			and the second		30	-500		1 1 1 1 1	
Thyrotropin	TSH	IU/L	1000	0.4-3.5		0.4	1-4.0	1.52	0.4-5.0			0.4-3.5		0.4	-4.0		0.4-5.0	
Thyroxine	fT4	pmol/L	No.	1. Aller	9-19	1 constant		10-20					9-19				10-20	
Tri-iodo thyronine	fT3	pmol/L			2.6-6.0				2.3-5.7	115-11-14			2.6-6.0				2.3-5.7	

Reference Intervals correct at time of printing (February, 2009).

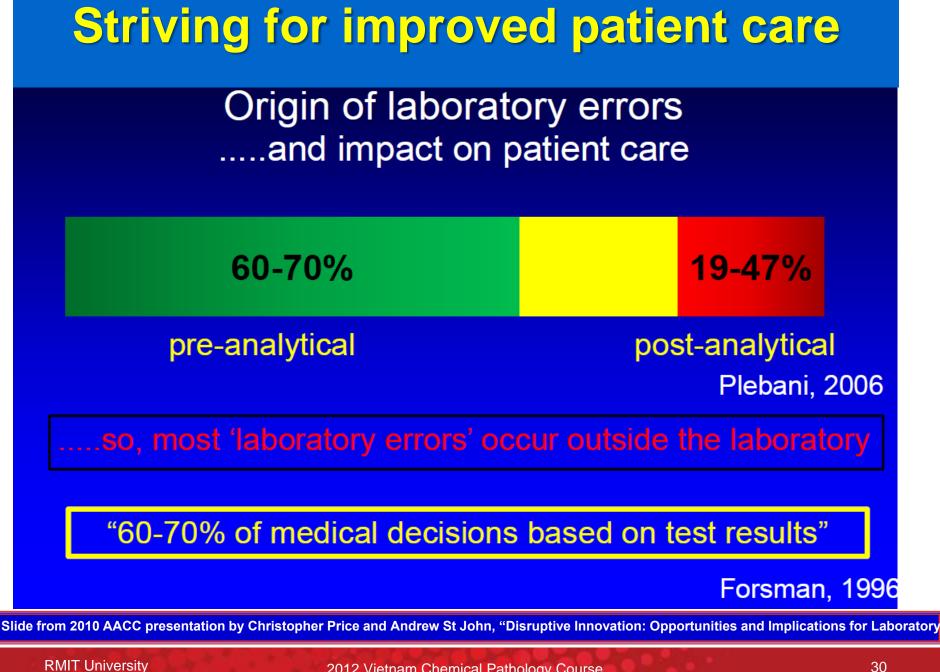
Sonic "Bhattacharya" Pregnancy RI

			NOT									GEST	ATION (W	VEEKS)							
ANALYTE		UNITS	PREGNANT	6	12	13		8	24	27	30	31	32	33	34	35	36	37	38	39	40
Sodium	Na	mmol/L	135-145									1.1.1.1	134-142		1				WS	1	
Potassium	K	mmol/L	3.5-5.5										3.4-4.8	1			-				
Chloride	CI	mmol/L	95-110								61		95-108								_
Bicarbonate	HCO3	mmol/L	20-32										18-28							_	
Urea	Urea	mmol/L	2.5-7.0										1.5-5.5								
Creatinine	Creat	umol/L	45-85								_		30-70								
Anion Gap	AG	mmol/L	10-20	1									10-20								
Total Bilirubin	TBIL	umol/L	3-15		2-15									2	-10			1	-		
Conjugated Bilirubin	CBIL	umol/L	<7		<7		_								<5						
Alkaline Phosphatase	ALP	IU/L	20-105				30-100				9					60-300	-				
Gammaglut-transferase	GGT	IU/L	5-35				5-30									3-30				1	
AlanineTransaminase	ALT	IU/L	5-30									1000	5-30								
AspartateTransaminase	AST	IU/L	10-35				8-30									8-35				1	
Total Protein	TP	gm/L	64-81	1	63-80		801	(0-75							55-72			11.2		
Albumin	Alb	gm/L	37-48		35-48			;	32-43		100					28-40		1			
Globulins	Glob	gm/L	23-39										21-36								
Total Calcium	TCa	mmol/L	2.15-2.55										2.05-2.45	- Sust		Turt	151	12	1.0.0	P	1
Corrected Calcium	CCa	mmol/L	2.15-2.55		2.15-2.55		100	2.3	20-2.60		S. U.S.		the second			2.25-2.65		a March		1 In	100
Phosphate	PO4	mmol/L	0.8-1.5	e Starl	123.20			200			2mag		0.8-1.5				1 Lube				
Uric Acid	Urate	mmol/L	0.15-0.40				0.10	-0.30	1.2.1			<0.31	<0.32	<0.33	<0.34	<0.35	-		<0.36		
Lactate Dehydrogenase	LD	IU/L	120-250	- 47.25			100-200									100-220					
Creatine Kinase	CK	IU/L	30-150										30-150	Sec.			2.62.9		The second	1	
Lipase	Lip	IU/L	10-55										10-55			No.		a start			
Amylase	Amy	IU/L	20-100	the states									20-100								
Iron	Fe	umol/L	5-30										5-30								
Transferrin	Trf	gm/L	2.0-3.6	Sec. 2	2.0-3.8			2	.0-4.8							3.0-4.8					
Transferrin Saturation	FeSat	%	10-45		5-45	12.00		2			Beze			5	-35	Martin Ca					See.
Ferritin	Fer	ug/L	30-200	Sec.	20-200	124		2	0-150				A BARRIER	Chinese,	430 A.	15-100				1000	
Thyrotropin	TSH	IU/L	0.4-3.5	0.44-3.2	0.07-2.8	125	0.09-2.5	0	33-2.9	0.3	1-2.8			0.3	2-2.9				0.3	3-2.9	(E-OUR)
Thyroxine	fT4	pmol/L	9-19	10.6-17.4	10.5-18.5		10.1-16.1	9	4-14.1	9.3	13.7	1000		8.5	-13.5			1223	9.3	8-13.6	
Tri-iodo thyronine	fT3	pmol/L	2.6-6.0	3.5-5.9	3.5-6.3		3.6-5.9	3	.2-5.6	3.4	-5.5	122.3		3.4	4-5.6				3.3	3-5.4	

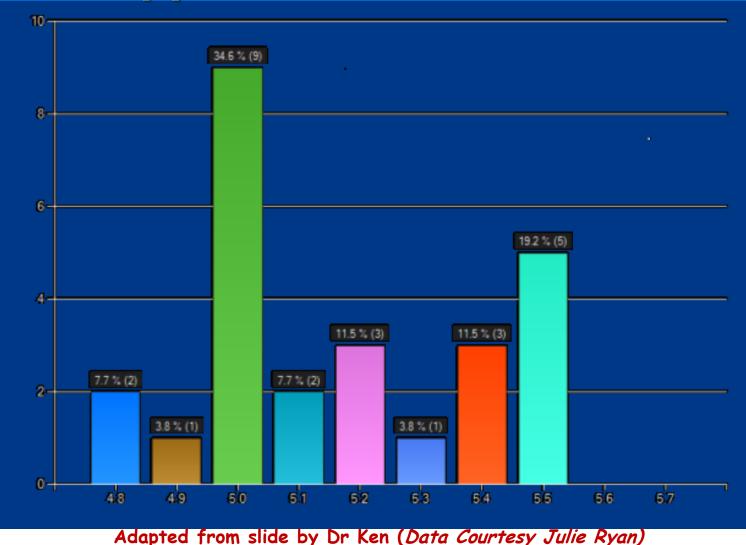
Beforence Intervals correct at time of printing (February, 2009).

Sonic "Bhattacharya" Paediatric Girl RI

													GIF	RLS									Hill Hill 1998	AL AND A
ANALYTE		UNITS	1W	2W	4W	ЗМ	4M	6M	8M	12M	2Y	ЗҮ	4Y	5Y	6Y	7	Y 81	99	10Y	11Y	12Y	13Y	14	15Y
Sodium	Na	mmol/L	132-147								1919-196	Ether Unit	A Star	132-145		N.C.			RE CON				174	M
Potassium	к	mmol/L		3.6-6.1				3.6-5.8			20.037		in some	- a (Th)	are-d	1940 P		3.5-5.5	State:				A Case	
Chloride	CI	mmol/L										Ser.	95	110	BX - 1		1110				223	1		
Bicarbonate	HCO3	mmol/L	17-26	1	7-27		17-29		1	8-29		and a		h wise	24.50		5	21-31		The state			The	
Urea	Urea	mmol/L				1.	5-5.5				2.0-6.5			Maria S		2.5-	-6.5	6	1000		2435	2	5-6.0	-
Creatinine	Creat	umol/L	20	-75				20	-35		1 Santa		20	-40	(and	20-50		20-55	2	0-65	3	0-70		40-75
Anion Gap	AG	mmol/L											10	-20						mar and				
Total Bilirubin	TBIL	umol/L	<200	<	100	<20		in the second	1	2-10	15.16.25			1245	a la constante		2-12		a de la constanción d		AND A CONTRACT	3-15	1.03	100
Conjugated Bilirubin	CBIL	umol/L					10-1		1			12.313		7			199			12301	1996	6 6.00	30	100
Alkaline Phosphatase	ALP	IU/L		1.2.1	110		120	-350			1-1-22			120-300	i ana		120-3	350		100-400	(23)	90-300	70-22	25 50-200
Gammaglut-transferase	GGT	IU/L		5-150		5-120	5	60	(5-40						5-20	and service of		251,231		E		-30	
AlanineTransaminase	ALT	IU/L				5	-35						Stat.	1271	Pale	1	State 1	5-30	G still	19042	10	14.85	111	
AspartateTransaminase	AST	IU/L	20-100	1			20-65	Sil		Sec. 1	20-55 15-45						15-40	18 S	12134	-159400	10-35	-		
Total Protein	TP	gm/L	50-67			50	-70	57-73	59-75	61-75	62-77			53-79		1		65-80	10-10		1	65-81		
Albumin	Alb	gm/L			1.5-3.5		35-48				37-48 38-48					-48			ap in the	38-49	1100			
Globulins	Glob	gm/L		1	3-25		1	15	-30		18-32	20-33	21-35 22-36							22-3	8			
Total Calcium	TCa	mmol/L	200 M		1000	2.3	0-2.80		ES-		2.30-2.75	2.30-2.70						2	25-2.65		101011		1	and the second
Corrected Calcium	CCa	mmol/L			2.3	0-2.80			2.3	0-2.75	2,30-2.70	2.30-2.65	and the second s		a design			2	25-2.60		110		AS IS	N. SALES
Phosphate	PO4	mmol/L		1.0-2.3		CAN'S	Millian	1.0-2.1		8575	1.0	-2.0				19/9/1	1.0-	1,9			13900	1000	1.0-1	
Uric Acid	Urate	mmol/L			Turne La				0.10-0.3	0		nin wesseller		100	Server and the server of the s	and the second	0,12-	3.33		0.15-0.35	E.	17 Styles	0.15-0	.38
Lactate Dehydrogenase	LD	IU/L		150-600				150-450		different.	150-400	ALL LOUG	150	-350		1	150-	300	12	0-300	A the la	12	0-275	
Creatine Kinase	СК	IU/L			Sol	K							30	150										
Lipase	Lip	IU/L	224	5-55		5-30	100	5	-25		5	-30				5+40				- 04		5-50		
Amylase	Amy	IU/L	11.15	0-10		0-20	A.L	5	-50		10-80 15-90 20-100									Sec. Sec.				
Iron	Fe	umol/L								5-25									1	5-30				
Transferrin	Trf	gm/L								2035									4					
Transferrin Saturation	FeSat	%								Genta,	5-	35										1	5-40	
Ferritin	Fer	ug/L								poter and	No. 19	20	200	di aki	Constant of				Seal and	1 States	Stantak			
Thyrotropin	TSH	IU/L	<12 0.98-5.6						0.64-5.8 0.51-4.8					4.8			0.53-5.	3	-	0.43+4.2				
Thyroxine	fT4	pmol/L	11,4-19.5					11.5-20.4 11.2-18.6						Sale P	The second	10.0-17	7	in the	10.1-17.9					
Tri-iodo thyronine	fT3	pmol/L	4.3-7.8					38-7.2 41-7.1 3.1-6.6 2.8-6.3								2.8-6.3								


eference Intervals correct at time of printing (February, 2009).

Sonic "Bhattacharya" Paediatric Boy RI


		1 MARE						WHICH H					BC	YS											
ANALYTE		UNITS	1W	2W	4W	зм	4M	6M	BM	12M	2Y	ЗY	4Y	5Y	6	3Y	7Y	8Y	94	10Y	11Y	12Y	13Y	14Y	15Y
Sodium	Na	mmol/L	132-147	7							-	1 3000		132-14	15		(ende	-	Postski	100	a series of		Des.		and the second second
Potassium	K	mmol/L		3.6-6.	1	1		3.6-5.8										3.5	-5.5						
Chloride	CI	mmol/L									_	-	95-	110											1.1
Bicarbonate	HC03	mmol/L	17-26		17-27		17-29		18	-29					1.			21	-31						
Urea	Urea	mmol/L		-		1.5	-5.5				2.0-6.5								2.5-6.5						
Creatinine	Creat	umol/L.	2	0-75				20	-35				20	-40		20-50		20	-55	20	-65	30-	70		40-75
Anion Gap	AG	mmol/L											10)-20											
Total Bilirubin	TBIL	umol/L	<200	1	<100	<20				2-10							2-12	6	10.147	1			3-15		
Conjugated Bilirubin	CBIL	umol/L					· · · ·							c7											
Alkaline Phosphatase	ALP	IU/L					120	-350						120-30	0				120	-350			100)-450	90-350
Gammaglut-transferase	GGT	IU/L		5-15	1	5-120	5	-60	5-	40		-				5-20					7		5-30		5-40
AlanineTransaminase	ALT	IU/L				5	-35					19-2-14	184	1				5-30	1. 1.			1000			5-40
AspartateTransaminase	AST	IU/L					20-65				20-55					15-45				NP444	Mark S		10-40	n	1
Total Protein	TP	gm/L	50-67				50-70 57-73		59-75	61-75	62-77	-		63-79	0				65-80	-	-		66-82		
Albumin	Alb	gm/L					35-48					1.24	37-48			3	8-48					39-49			
Globulins	Glob	gm/L		1	13-25			15	-30		18-32	20-33		21-35	R.				22	-36				22-38	3
Total Calcium	TCa	mmol/L				2.30	-2.80				2.30-2.75	2.30-2.70				AT COLOR	THE RETURN		2.25	-2.65	1		222	100	210
Corrected Calcium	CCa	mmol/L			2.3	0-2.80			2.30	-2.75	2.30-2.70	2.30-2.65							2.25	-2.60	1.50				1.20
Phosphate	PO4	mmol/L		1.0-2.	3	1.000		1.0-2.1			1.0	-2.0		183			a de la	1.0	+1.9					1	1.0-1.7
Uric Acid	Urate	mmol/L			Sec. 1					0.10-0.30		C. Service		3.53						0.15-0.35		0.16-0.40	0.18	3-0.45	0.20-0.5
Lactate Dehydrogenase	LD	IU/L		150-60	Ю			150-450			150-400	10 21	150	-350		1944 A	1	50-300			200	120-	300		
Creatine Kinase	СК	IU/L		40-20	0				15	Q1-21		30-150						THE STATE			E an and	40-	200		
Lipase	Lip	IU/L		5-55		5-30		5	-25		5-	-30		Sec.		5-40			5			5-	50	1.4.31	RT.C.
Amylase	Amy	IU/L		0-10		0-20	1000	5	50		10	+80				1	5-90			Restard	1.5	T-united.	20-100	a	
Iron	Fe	umol/L	1.65									5-	25	1		12									5-30
Transferrin	Trf	gm/L	110	1	S line		1 a.c.	1910					2.0	-3.5											
Transferrin Saturation	FeSat	%						5-	35											No.	5-40				
Ferritin	Fer	ug/L							20	200	1	S. A.	120.22				S. S.	N. Cost	di tine-						
Thyrotropin	TSH	IU/L	<12 0.98-5.6						0,64	-5.8				0	51-4.8				0.53	-5.3		0.43-4			
Thyroxine	fT4	pmol/L	11.4-19.5						Carl State	11.5	20.4				11	.2-18.6				10.0	17.7		10,1-17		
Tri-iodo thyronine	пз	pmol/L		4.3-7.8						3.8-7.2 41-7.1									3.1-	6.6		2.8-6.3			

Reference Intervals correct at time of printing (Fobruary, 2009)

2011 Australian (AACB) Survey: Upper RI for Potassium

Arch Pathol Lab Med. 2007;131:348-357

The Origin of Reference Intervals

A College of American Pathologists Q-Probes Study of "Normal Ranges" Used in 163 Clinical Laboratories

Richard C. Friedberg, MD, PhD; Rhona Souers, MS; Elizabeth A. Wagar, MD; Ana K. Stankovic, MD, PhD, MPH; Paul N. Valenstein, MD

	Tab	ole 2. Sou	rce of Refer	ence Interv	vals*			
				Institutio	ns, No. (%)			
	Potassium	Calcium	Magnesium	TSH	Hgb (Male)	Hgb (Female)	Platelets	aPTT
Adult								
Internal study of healthy individuals	70 (44.3)	70 (43.8)	70 (44.6)	75 (48.4)	85 (53.5)	83 (52.5)	81 (51.3)	130 (82.3)
Manufacturer's recommendations/ inserts Published literature/	55 (34.8)	56 (35.0)	57 (36.3)	46 (29.7)	17 (10.7)	18 (11.4)	19 (12.0)	12 (7.6)
textbooks	19 (12.0)	17 (10.6)	16 (10.2)	12 (7.7)	43 (27.0)	43 (27.2)	44 (27.8)	6 (3.8)
Other laboratories (adopted with internal validation) Nonlaboratory medical staff	8 (5.1)	9 (5.6)	8 (5.1)	10 (6.5)	8 (5.0)	8 (5.1)	8 (5.1)	5 (3.2)
recommendations Other laboratories (adopted with-	2 (1.3)	4 (2.5)	2 (1.3)	4 (2.6)	3 (1.9)	3 (1.9)	3 (1.9)	2 (1.3)
out internal validation) Other	0 (0) 4 (2.5)	0 (0) 4 (2.5)	0 (0) 4 (2.5)	2 (1.3) 6 (3.9)	1 (0.6) 2 (1.3)	1 (0.6) 2 (1.3)	1 (0.6) 2 (1.3)	2 (1.3) 1 (0.6)

* TSH indicates thyroid-stimulating hormone; Hgb, hemoglobin; and aPTT, activated partial thromboplastin time.

RMIT University

Clin Chem Lab Med 2004;42(7):752-757

Clinical interpretation of reference intervals and reference limits. A plea for assay harmonization George G. Klee*

f laboratory testing methods could be harmonized, laboratories could potentially share reference data to make these data more reliable.

Harmonisation: (RG definition)

- Is the process of compromise to come to agreement for a common approach
- In the context of laboratory medicine it relates to agreement of processes to provide commonality aimed at improving patient outcome

Rationale

- Achieving harmonisation and standardisation of clinical assays will provide commutability of results between laboratories
- This will produce improved ease of result interpretation for the doctor and patient
- Improved clinical care / outcome

Adapted from slide by Dr Ken

Nobelforum, Karolinska Institutet Stockholm April 24-26, 1999

34

Scand J Clin Lab Invest 1999; 59: 585

The Scandinavian Journal of *Clinical & Laboratory Investigation*

Scand J Clin Lab Invest-Vol. 59-No. 7-November 1999

SPECIAL ISSUE

Strategies to Set Global Analytical Quality Specifications in Laboratory Medicine

EDITORS OF THIS SPECIAL ISSUE

Per Hyltoft Petersen Callum G. Fraser Anders Kallner Desmond Kenny

Edited by The Scandinavian Society for Clinical Chemistry

SCANDINAVIAN UNIVERSITY PRESS

Oslo, Stockholm, Copenhagen, Oxford, Boston

SJCLAY 59 (7) 475-586 (1999) NO ISSN 0036-5513

Consensus agreement

D. KENNY,* C. G. FRASER,† P. HYLTOFT PETERSEN,‡ & A. KALLNER§

*Department of Clinical Biochemistry, Our Lady's Hospital for Sick Children, Dublin, Ireland; †Directorate of Biochemical Medicine, Ninewells Hospital and Medical School, Dundee, Scotland; ‡Department of Clinical Chemistry, Odense University Hospital, Odense, Denmark; and §Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden

The Editors of this special issue of the Scandinavian Journal of Clinical and Laboratory Investigation and the Organising Committee of the Conference: Strategies to set Global Quality Specifications in Laboratory Medicine, Stockholm, 24–26 April 1999, are pleased to report that this recent Conference was most successful. Over 100 participants from 27 countries actively contributed to the discussions on the 22 formal presentations. Our primary aim in organizing the Conference was to provide a vehicle for reaching consensus on the setting of global quality specifications in laboratory medicine. This objective was enclined and itely constructive debate after the presentations were complete led to agreement on the precipies laid down in the following Consensus Statement.

CONSENSUS STATEMENT*

The main outcome of the Conference was agreement that the following hierarchy of models should be applied to set analytical quality specifications.

- Evaluation of the effect of analytical performance on clinical outcomes in specific clinical settings
- Evaluation of the effect of analytical performance on clinical decisions in general:
 - Data based on components of biological variation
 - b. Data based on analysis of clinicians' opinions
- 3. Published professional recommendations
 - a. From national and international expert bodies
 - b. From expert local groups or individuals
- 4. Performance goals set by
 - a. Regulatory bodies
 - b. Organizers of External Quality Assessment (EQA) schemes
- 5. Goals based on the current state of the art
- As demonstrated by data from EQA or Proficiency Testing scheme
- b. As found in current publications on methodology.

Where available, and when appropriate for

the intended purpose, models higher in the hierarchy are to be preferred to those at lower levels. The concept of such a hierarchy is cuscribed in a recent Editorial in Clinical Chemistry in which the relative merits of the abuve models are discussed (Clin Chem 1999; 45: 321-3). This hierarchy has also been proposed by the ISO/TC 212/WG 3 subgroup on "Analytical Performance Goals Based on Medical Needs" as the basis for the ongoing revision of ISO/CD 15196. The following matters were also discussed and agreed.

- The above hierarchy includes currently available rhodels; however, new useful concepts will undoubtedly evolve. Implementation of any of the models should use well-defined and descrifted procedures.
- To facilitate the future debate on the setting of analytical quality specifications, there is a need or agreement on concepts, definitions and terms.
- There is a need for continuous improvement in the exchange of information on quality issues: between clinical laboratory professionals and the diagnostics industry, and between clinical laboratory professionals and the users of the laboratory service.

IFCC, IUPAC and WHO kindly sponsored the Conference but it must be noted that the Consensus Statement reflects the views of the presenters and registrants who participated in the Conference and does not necessarily represent those of the sponsoring bodies.

-Adapted from slide by Dr Ken

RMIT University

Case for Common Reference Intervals

What is necessary:

- -Appropriate reference Intervals
- -Evidence exists showing that:
 - -Methods are 'the same'
 - -Populations are 'the same'
- The quality of common reference intervals depends on the quality of evidence used to derive them
- -i.e. similar to transference of RI

Clin Biochem Rev 2004; 99-104

The Case for Common Reference Intervals *Graham RD Jones,¹ Antony Barker,⁵ Jill Tate,² Chen-Fee Lim,³ Ken Robertson⁴

Table 4. Practical issues with common reference intervals.

- Organise and support a body to oversee the project.
- Develop agreed statistical approaches to development and application of common reference intervals.
- 3. Obtain quality local data for reference intervals.
- Publish common reference intervals and criteria for use by laboratories.
- 5. Overcome inertia in laboratories and encourage wide-spread adoption.

Group Initiatives for Harmonisation of Reference Intervals

- ARQAG Auckland Region Quality Assurance Group – New Zealand
- SIQAG Southern Island Quality Assurance Group – New Zealand
- 3. NORIP Nordic Reference Interval Project - Scandinavia
- 4. UKHarmony UK
- 5. AACB Australasia
- 6. Sonic Australia
- 7. Other

Klinisk Biokemi i Norden | 2 | 2003 10

Reference intervals for 25 of the most frequently used properties in clinical chemistry Proposal by Nordic Reference Interval Project (NORIP)

Pål Rustad (prustad@furst.no), Fürst Medical Laboratory, Oslo

pathology harmony.co.uk

Phase 1 Results

The table below shows the recommendations that resulted from the work of the first phase of Pathology Harmony. Only those proposals which met with overwhelming acceptance at the final meeting in November 2007 have been included in the recommendations.

Reference intervals and units – in adults, non-pregnant

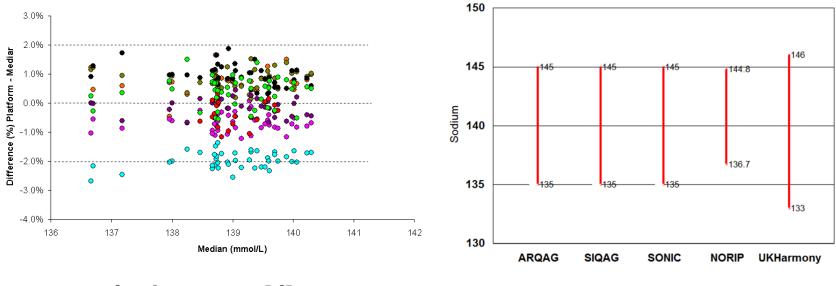
Code No.	Analyte	Lower/upper limit	Units
PH 07 001	Serum Sodium	133 – 146	mmol/L
PH 07 002	Serum Potassium	3.5 – 5.3	mmol/L
PH 07 003	Serum Urea	2.5 – 7.8	mmol/L
PH 07 004	Serum Chloride	95 – 108	mmol/L
PH 07 005	Serum Bicarbonate	22 – 29	mmol/L
PH 07 006	Serum Phosphate	0.8 – 1.5	mmol/L
PH 07 007	Serum Magnesium	0.7 – 1.0	mmol/L
PH 07 008	Serum Albumin	35 – 50	g/L
PH 07 009	Serum Total Protein	60 – 80	g/L
PH 07 013	Serum Osmolality	275 – 295	mmol/kg

Hierarchy for Reference Intervals

Level	Principle	Reference Limits	Common Interval
1	Clinical Outcome		
2A	Biological variation		
2B	Clinician Survey		
3	Professional Recommendations		
4	Proficiency survey		
5	State of the Art		

Klinisk Biokemi i Norden | 2 | 2003 10

Reference intervals for 25 of the most frequently used properties in clinical chemistry Proposal by Nordic Reference Interval Project (NORIP)


Pål Rustad (prustad@furst.no), Fürst Medical Laboratory, Oslo

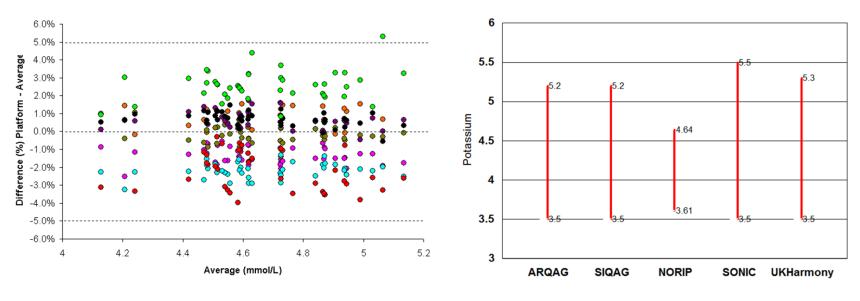
1																					
		CA	ı	Quality									NO	RIP Refer	rence interv	vals					
Component	Unit	C.r.		goal						Calcula	ted							Sugge	stions		
component	Cinc	Target		guai	Gen-				Seru		licu		Plasm	a (Li hepa	arin)		Se	rum	Plas	ma	
		value	Source	Bias	der	Age	Low	90% CI	High	90% CI	N	Low	90% CI	High	90% CI	N	Low	High	Low	High	Comment
						18-39	36.5	36.3-36.7	47.9	47.5-48.4	1010	35,8	35.2-36.3	47,2	46.9-48.1	452	36	48			
Albumin	g/L	40.52	NTP	2.1 %	FM	40-69			45.4	45.2-45.6	1248			45.4	45.1-45.9	589	1	45	1		1
	- B					>=70	34,4	33.5-34.8			450	34,5	33.8-34.9			244	34	1			
Bilirubin	umol/L	8.5	DGKC	6.6 %	FM	>=18	4,7	4.5-5.0	24	23.1-25.1	2738	5,1	4.7-5.4	26	24.3-28.4	887	5	25			
Calcium	mmol/L	2,266	NTP	1,4 %	FM	>=18	2,17		2,51		2569	2,15	2.14-2.16	2,48	2.47-2.50	1204	2.15	2.51			
Calcium	mmoi/L	2,200	NIF	1,4 70	rivi			2.17-2.18		2.50-2.52	1385	2,13	2.14-2.16	2,46	2.45-2.49	623	2,13	2,47			=Ca+0.020x(41.3-Alb) where 41.3 g/L
Calcium corrected	mmol/L	2,2816		1,2 %	FM	18-49	2,20	2.19-2.21	2,47	2.46-2.48		2,17	2.10-2.18				2,17				. , .
		-,		-,		>=50			2,53	2.52-2.54	1149			2,52	2.49-2.53	558		2,53			is the albumin median
						18-29	2,89	2.78-3.04	6,18	6.0-6.37	674	2,95	2.79-3.14	5,89	5.78-6.52	316	2,9	6,1			
Cholesterol	mmol/L	4,90	NTP	3,0 %	FM	30-49	3,43	3.28-3.55	6,92	6.77-7.19	843	3,35	3.13-3.51	6,75	6.41-7.06	368	3,3	6,9			
						>=50	4,02	3.98-4.14	7,87	7.73-8.09	1216	3,89	3.79-4.01	7,35	7.22-7.62	618	3,9	7,8			
					F	18-59	51,1	50.2-52.0	84,1	83.0-87.0	1081	50,5	47.4-52.7	87,5	84.5-90.4	647	50	90			See table 3 and plot of enzymatic-,
_					P	>=60					310	1									Vitros - and Jaffe methods on NORIP
Creatinin	umol/L	70,6	NTP	4,7 %		18-59	63.6	62.8-64.3	100,0	98.7-101.8	926	62,4	60.7-63.7	100,7	98.6-103.1	597	60	100			home site (1)
					M	>=60					317										
Iron	umol/L	21.16	NTP	5.4 %	F	18-49	9,2	8.9-9.6	33,7	33.0-34.4	2309	9,0	8.3-9.4	33,7	32.2-35.0	1076	9	34			Results <6 umol/L removed
	timor ti	21,10		0,170		18-49	0.11	0.08-0.12	0.50	0.48-0.58	162	0.12		0.61		56	0.10	0.50			Oestrogen users and iron <6
Iron saturation		0.311		10.1 %	F	>=50	0,11	0.11-0.17	0,50	0.40-0.50	133	0,12		0,01		00	0.15	0,00			umol/L removed
non saturation		0,311		10,1 70	м	>=18	0,14		0,57	0.53-0.61	369	0.14		0.59		80	0,10	0.57			CHIOPE TEHIOVED
								0.14-0.17				4.18	-	6.29	-	527	4.0	6.0	4.2	0.0	Easting (12 b)
					FM	>=18	3,98	3.94-4.09	5,99	5.90-6.13	918		4.14-4.36		6.12-6.52		4,0	6,0	4,2	6,3	Fasting (>=12 h)
Glucose	mmol/L	4,464	NTP	1,7 %	F	>=18	3,94	3.86-4.05	5,87	5.68-5.99	482	4,13	3.97-4.18	6,12	5.91-6.30	271					
					М	>=18	4,17	4.08-4.24	6,21	5.96-6.50	436	4,47	4.34-4.55	6,54	6.19-6.99	256					
HDL-cholesterol	1/7	1,331	NORIP	3,9 %	F	>=18	1,03	0.99-1.06	2,61	2.54-2.66	1379	1,04	0.98-1.08	2,68	2.59-2.79	644	1,0	2,7			
HDL-cholesterol	mmol/L	1,331	NUKIP	3,9 %	M	>=18	0,83	0.79-0.86	2,13	2.05-2.16	1222	0,80	0.75-0.85	2,14	2.09-2.28	586	0,8	2,1			
Potassium	mmol/L	3,74	NTP	2,3 %	FM	>=18	3,61	3.60-3.63	4,64	4.61-4.66	2608	3,47	3.45-3.49	4,38	4.32-4.43	1172	3,6	4,6	3,5	4,4	See table 2
						18-29	1,24	1.06-1.33	4,29	3.98-4.38	275	1,21	0.58-1.36	4,00	3.68-4.30	144	1,2	4,3			
LDL-cholesterol	mmol/L	2,9		4,0 %	FM	30-49	1,39	1.28-1.68	4,71	4.39-5.11	310	1,47	1.16-1.61	4,25	3.95-4.95	159	1,4	4,7			LDLchol.=cholesterol-HDLcholesterol-trigly-
						>=50	1.98	1.86-2.16	5.35	5.13-5.67	579	1,94	1.73-2.05	5,08	4.89-5.86	351	2,0	5,3	1		cerides/2, where triglycerides is <4 mmol/L
Magnesium	mmol/L	0,797	NTP	2,6 %	FM	>=18	0,71	0.70-0.71	0.94	0.93-0.95	2123	0,71	0.71-0.72	0,93	0.93-0.94	943	0,71	0.94			
Sodium	mmol/L	137.4	NTP	0.5 %	FM	>=18	136.7	136.3-136.9	144.8	144.5-145.1	2642	136,7	136.35-137.11	143,6	143.4-143.9	1291	137	145		144	
oodiiiiii	minort	101,1		0,0 70	F	>=18	0.85	0.84-0.87	1.49	1.45-1.50	1365	0.76	0.72-0.78	1.41	1.37-1.45	618	0.85	1.50	0,76	1.41	
Phosphate	mmol/L	1.03	DGKC	5.4 %	r	18-49	0,85	0.73-0.77	1,43	1.45-1.50	670	0,70	0.69-0.73	1,53	1.45-1.59	298	0,05	1.65	0,70	1,53	-
rnospnate	mmol/L	1,03	DGKU	0,4 70	М	>=50	0,75	0.73-0.77			558	0,71	0.69-0.73	1.23		271	0,75	1,05	0,71	1,33	-
			DONO				00.4		1,33	1.31-1.39		64.3			1.16-1.31		62		64		
Protein	g/L	67,1	DGKC	2,1 %	FM	>=18	62,4	62.0-62.7	77,9	77.5-78.8	1985		63.8-64.9	79,5	79.2-80.0	877		78		79	2
			NORIP		FM	>=18	48,9	48.5-50.1	83,4	81.1-85.7	668	47,4	44.7-49.8	79,8	76.0-84.5	136	49	83	47	80	Oestrogen users removed
TIBC	umol/L	68,0	(IFCC	4,8 %																	
			transferrin)																		
Triglycerides	mmol/L	1,31	DGKC	7,1 %	FM	>=18	0,47	0.44-0.48	2,60	2.35-2.86	1203	0,45	0.42-0.48	2,39	2.21-2.55	704	0,45	2,60			Fasting (>=12 hours)
					_	18-49	2,66	2.47-2.71	6,41	6.09-6.71	761	2,59	2.36-2.72	6,24	5.76-6.79	276	2,6	6,4			
	1-				F	>=50	3,11	2.97-3.31	7,97	7.66-8.35	585	3,05	2.68-3.38	7,40	7.23-8.70	248	3,1	7,9			1
Urea	mmol/L	4,8	NTP	7,9 %		18-49	3,24	3.08-3.31	8,16	7.97-8.42	649	3,21	2.97-3.50	8.08	7.50-8.87	252	3,2	8.1			1
					M	>=50	3,64	3.46-3.78			538	3,46	3.24-3.61	8,06	7.83-9.75	230	3,5				
	-					>=J0 18-49	154	148-159	350	340-365	780	160	142-168	365	333-407	280	155	350			
Uric acid	umol/L	290,2	NTP	7,2 %	F	>=50	1.04	148-109	350	340-365	608	100	192-100	421	333-407	257	100	400			
one aciu	thritot/L	200,2	MIF	1,6 70			001					207					220	400			
					M	>=18	231	225-239	475	466-481	1232	227	213-235	482	455-502	503	230	480			

Analytical Bias & Ref Intervals: Sodium

Koerbin Bias Study

RR Consensus

+/- 1 mmol/L


+/- 2 mmol/L

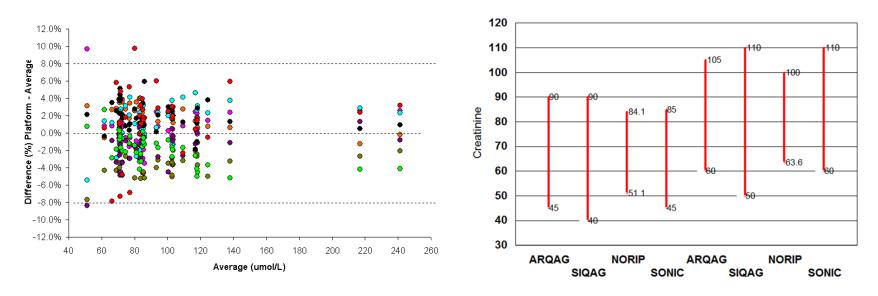
Adapted from slide by Dr Ken

Analytical Bias & Ref Intervals: Potassium

Koerbin Bias Study

RR Consensus

+/- 0.1 mmol/L


+/- 0.3 mmol/L

Adapted from slide by Dr Ken

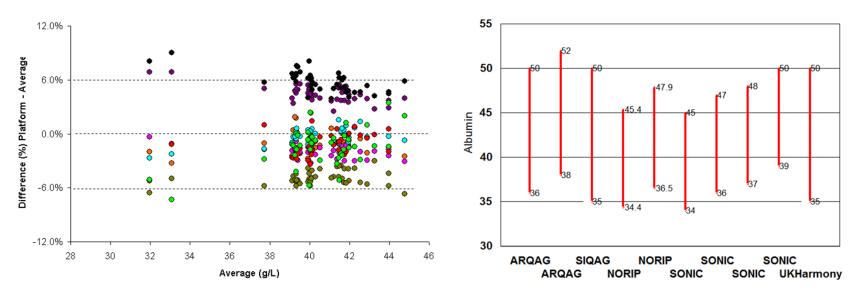
Analytical Bias & Ref Intervals: Creatinine

Koerbin Bias Study

RR Consensus

+/- 4 µmol/L

+/- 10 µmol/L

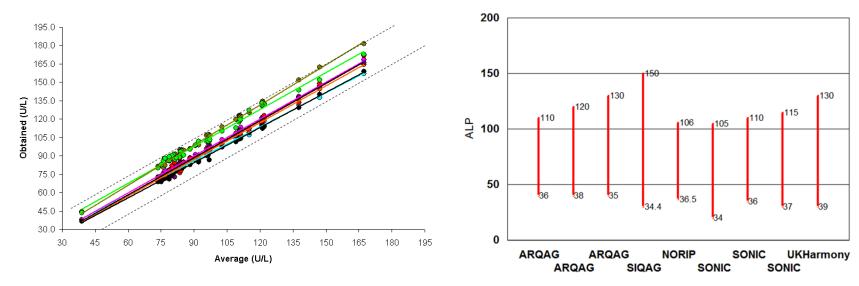

Adapted from slide by Dr Ken

Analytical Bias & Ref Intervals: Albumin

Koerbin Bias Study

+/- 2 g/L

RR Consensus


+/- 5 g/L

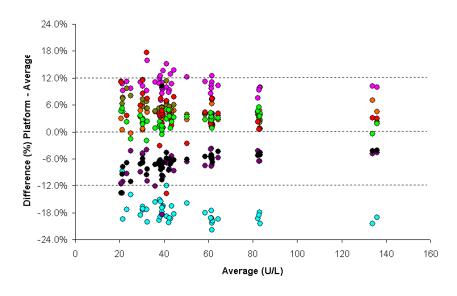
Adapted from slide by Dr Ken

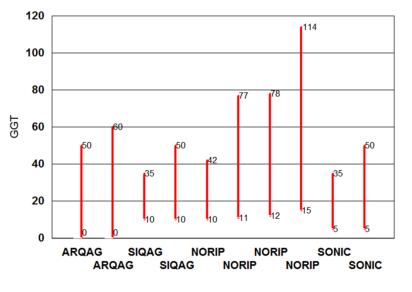
Analytical Bias & Ref Intervals: Alkaline Phosphatase

Koerbin Bias Study

RR Consensus

+/- 5 IU/L


+/- 20 IU/L


Adapted from slide by Dr Ken

Analytical Bias & Ref Intervals: GGT

Koerbin Bias Study

RR Consensus

+/- 5 IU/L

+/- 30 IU/L

Adapted from slide by Dr Ken

Summary: Harmonised Reference Intervals

- What is necessary?
 - -Appropriate reference Intervals
 - -Evidence exists showing that:
 - -Methods are 'the same'
 - -Populations are 'the same'
 - -The quality of common RI depends on the quality of evidence used to derive them

Do you know the source and robustness of your RI?

Is it different to your peers with the same method?

Australasian Association of Clinical Biochemists 50th Annual Scientific Conference 15-18 November 2012 Melbourne Convention & Exhibition Centre Melbourne Victoria

